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I
1 Introduction

The electric motor is the primary actuator used in robotics. However, its high
weight, limited sizes, complex transmissions and restrictive shapes have constrained
the design and development of robotic systems. Alternatives such as pneumatics and
hydraulics have achieve some successes, but these depend on compressors which are
themselves driven by electric motors. Nitinol, a shaped memory alloy, has also been
used in robotics, however the thermal to mechanical energy conversion has proven
difficult in practical applications. What would be ideal for robotic actuation would
be an analog of a human muscle - a contractile compliant material driven by chemical
or electrical signals. Recent research in polymer gels offers the hope for an artificial
muscle and a potential revolution in robot actuator design.

Gel is intermediate between liquid and solid, consisting of a polymer network and
interstitial fluid. The properties of the gel, including its equilibrium and dynamic
aspects, are defined by the interaction between the polymer and the liquid. Examples
of gels abound including natural gels, such as Jello, the vitreous humor of the eye,
the lining of the stomach, intestine and lung, and muscle; and artificial gels, such as
polyacrylamide, polystyrene, and others used in the manufacture of rubber, plastics,
glues and films. A property common to all gels (Li 1989) and one important for
actuator design is their unique ability to undergo abrupt changes in volume.

Gels can swell or shirk as much as 1000 times in response to small changes in
external conditions such as temperature, pH, electric fields (De Rossi 1986, Tanaka
1982), or solvent and ionic composition (Tanaka 1987). Not only are these changes
large, they are also reversible. Restoration of the initial external conditions re-
turns the gel to its original volume. In general, the rate of contraction is propor-
tional to the square of the linear dimension of the gel. For example, micro sized
gel fibers contract in milliseconds. In addition, some gels support substantial loads.
Polyacrylonitrile-polypyrrole (PAN-PPY) and polyvinylachohol (PVA) gel fibers gen-
erate up to 10ON/cm2 (Chiarelli 1989), approximately equal to that of a human mus-
cle. N

The possibility of an artificial muscle is quite exciting. In fact a number of re-
searchers have already constructed robotic and prosthetic prototypes based on con-
tractile gels. However, to move beyond a mere laboratory curiosity, a number of fun-
damental issues must be addressed, such as efficiency, power density, energy storage
and transmission, dynamics, control, heat dissipation, actuator design, and others. In
addition, contractile gel actuators must compared favorable to existing actuators, at
least in some applications, to be considered a viable alternative in mechanical design.

This review outlines some of the basic research in polymer gels, providing a back-
ground for the analysis and design of gel actuators. First, the physical mechanisms of
gel volume change are discussed. Second, the processes and methods of gel prepara-
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tion are presented. Third, the gel kinetics or rate of contraction, which are of primary
important in actuator applications, are reviewed. Finally, some examples are given
of actual devices constructed from these contractile polymers.

2 Volume change

There are three competing forces acting on the gel polymer network: the rub-
ber elasticity, the polymer-polymer affinity and the hydrogen ion pressure. These
forces, collectively called the oamotic pressure, determine the equilibrium state of the
gel. The competition between these forces determines the osmotic pressure while the
changing balance of these forces produces the volume change.

Rubber elasticity tends to shrink the gel under tension and expand it under com-
pression. The elastic force is in equilibrium when the polymer ends are at their root
mean square distance. Although the equilibrium volume for elasticity is independent
of the external conditions, its force is proportional to the absolute temperature.

Polymer-polymer affinity depends on the electrical attraction between the polymer
and the solvent. An attractive force between the polymer and the solvent causes the
absorb solvent molecules, while repulsive force produces the opposite effect. This force
does not depend on the temperature, but on the solvent and volume of the gel. Since
polymer-polymer affinity is a short range force and depends only on polymer-polymer
contact, its effect is inversely proportional to the square of the volume.

Hydrogen ion pressure is the force exerted by the motion of the hydrogen ions H+
within the gel network. Hydrogen ions enter the gel attracted by the negative charges
on the polymer chain while their random motions tend to expand the gel much as a
gas exerts pressure within a contained volume. The hydrogen ion pressure depends
on the ionization of the polymer, as well as, both temperature and volume. The force
is linearly proportional to the absolute temperature and inversely proportional to the
square of the volume.
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Figure I Volume changes in acrylamide gels are shown as a function of
acetone concentration and degree of hydrolysis.

3 Gel Preparation

S~Gels can be formed by condensation polymerization, where bifunctional and poly-

functional units are combined, or by cross-linking polymers from bifunctional monomers.
Cross linkages can form from covalent bonds or through weak forces such as hydrogen
bonds, Van Der Wsals forces or hydrophobic or ionic interactions. As an example,
consider the preparation of standard polyacrylamide gels (Tanaka 1981). Acrylamide
and bisacrylamide are dissolved in water together with polymerization initiators, am-
monium persulfate (AP) and tetramethylethylene diamine (TEMED). TEMED re-
acts with AP leaving an unpaired valence electron which combines with acrylamide
or bisacrylamide transferring the Unpaired electron to the acrylamide molecule, figure
2. This procedure continues, forming an indefinitely large polymer network. After
washing, the gel is hydrolyized in a basic solution, converting the aminocarbonyl side
chains into carboxyl groups. The degree of hydrolyization determines the percent-
age of carboxyl groups which greatly afects the volume phase transitions of the gel
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Figure 2 Activation of TEMED by AP yields an unpaired valence electron
which combines with acrylamide or bisacrylamide forming an indefinitely
large polymer network. Hydrolysis in a basic solution converts aminocar-
bonyl groups into carboxyl groups, which affects the volume phase transi-
tions. (Tanaka 1981)

4 Kinetics

The kinetics or rate of swelling (or contraction) is an extremely important char-
acteristic in the application of gels to mechanical actuation. The gel kinetics is a
diffusion limited process and is therefore proportional to the square of the dominant
linear dimension of the gel. Thus for a gel fiber, the contraction rate t, is equal to
a contraction rate constant c times the square of the diameter d2, t. = cd2. For
polyacrylamide, c is approximately 2 x 10' s/m 2. Therefore polyacrylamide gels with
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a diameter of 1 cm take about 2.5 days to contract, while micron diameter fibers
take milliseconds. An artificial muscle formed by bundling 25pm diameter PAN-PPY
fibers was constructed and demonstrated contraction rates on the order of a second
(Chiarelli 1989).

In spite of its important for actuator design, gel kinetics has only recently been
investigated (Matsuo 1988a, 1988b, Tanaka 1987a). Initially it was thought that
volume change was governed by the diffusion of individual water molecules through
the network, but it was latter shown to be a collective diffusion process of the entire
polymer network. The local motion of the polymer network is given by a diffusion
equation D = K/f, where D is the diffusion coefficient, K the elastic modulus of the
network and f the frictional coefficient between the network and the liquid (Chiarelli
1988). The collective diffusion explains both the macroscopic swelling rates and the
dynamics of local density fluctuations.

5 Application

Though the phenomena of volume change within polymer network and the chem-
ical driven contractile forces they produce has been known for years (Kuhn 1950,
Flory 1956, Hamlem 1965), only recently have there been any attempts to apply
these materials to robotics. A parallel jaw gripper driven by antagonistic polyviny-
lac hohol contractile elements powered by changes in acetone concentration has been
constructed (Caldwell 1989), along with an artificial urethral sphincter, (Chiarelli
1989). For the most part, however, these devices are still simple prototypes stages.

The first gels were very slow, reaching an equilibrium volume anywhere from one
half an hour to a number of days. Most gels were also weak, unable to support
significant loads. However, recent research has focused on thin films and bundles
of small fibers whose polymer networks are aligned with the strain axis, allowing
faster contraction rates and higher strength. Other attempts include superimposing
a cross-linked a network onto a fiber by projecting UV light through a mask. This
should yield a strong polymer and an effectively smaller dominant linear dimension,
producing a gel with both high strength and rapid contraction (Zhang 1990).

5
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Figure S A force generating element, a robot gripper and artificial urethral
sphincter are some of the mechanical devices constructed from contractile
polymer gel.

6 Conclusion

Despite some success in contractile gel actuator development, there are a num-
ber of fundamental questions which must be answered before consideration gels in
robotic devices. First, there are material questions such as the elastic modulus, tensile
strength, stress-strain relations (Chiarelli 1990), fatigue life, and thermal and electri-
cal conductivity. Second, there are thermodynamic issues such as efficiency, power
and force densities, and power limits. Third, there are basic engineering concerns
such as power supply and delivery, device construction (De Rossi 1988), manufactur-
ing, power transmission, dynamic modelling (Genuini 1990, Morasso 1990), control,
integration and packaging. Finally, there are other concerns such as the coordina-
tion and integration of multiple actuators, material and manufacturing costs and the
toxicity of both the gels and their precursors. Many promising technical advances
(e.g. ceramic superconductors) have been limited by basic physical or engineering
deficiencies. However, given limitations, there may be technical niches were these
devices may provide practical results. In any case without a thorough investigation
of the application of contractile gels to actuator design, the extent or limit of this
technology is still unknown.
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Appendix
Gel Preparation

N-Isopropylacrylamide (N-IPA) (Matsuo 1988)

"* Preparation of paraffin oil
Wash paraffin oil with alkaline (IN N&OH) and acid (IN HCI) to remove contaminants. Flush
with large amounts of water. Pass paraffin oil through a column packed with molecular sieves
to remove water.

"* Purify N-IPA
Recrystallize N-IPA with toluene, filter by aspiration and dry under a vacuum. Store in a
colored bottle to avoid light exposure.

"* Monomer solution
Combine 700mM N-isopropylacrylamide (N-IPA), 8.6mM N,N'-methylenebisacrylamide (BIS)
and 0-128mM sodium acrylate (prepared from acrylic acid and sodium bicarbonate).

"* Polymerisation
Add 48 Al tetramethylethylenediamine (TEMED) and 0.2 ml of ammonium persvlfate to 10
ml monomer solution

" Gelation
Inject I ml per-gel solution into 50 ml paraffin oil, degas, saturate with nitrogen, and disperse
into submilHimeter droplets. Agitate for one hour at 20°C, then pour solution in 1000 ml
water. Use petroleum ether to removal paraffin oil. Wash gel beads several times.

Polyacrylonitrile-polypyrrole (PAN-PPY) (Chiarelli 1989)

"* Anneal PAN
Anneal PAN (Mitsubishi Rayon Co.) at 220*C for 5 hours and then boil in IN NaOH for 30
min. to produce a partially ionised carboxylic structure

"* Combine with PPY
Immerse fibers for 24 hrs. in an aqueous solution of ferric chloride (40% by weight). Add
HCL to pH = 0.5. Polymerize PPY in PAN by gas state technique (Ojio and Miyata). Place
in flask under saturated atmosphere of water and PPY at 10°C for 5 to 20 hours.

Polyvinylalcohol.polyacryiic acid (PVA-PAA) (Chiarelli 1988)

"* Mix components
Dissolve 80% PVA with a degree of hydrolisis of 98% and molecular weight -10k (AnalytiCals,
Carlo Erba, Milano, Italy) with 20% PAA molecular weight - 250k (Aldrich Chemical Co.,
Milwaukee, WI, USA) in bidistilled water and stir for 20 min. at 60 0 C.

"* Dehydrate
Dehydrate solution in at 40*C under mild vacuum

"* Cross-link
Thermally cross-link polymer at 1300C for 45 min., then equilibrate with bidistilled water.
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